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Abstract. We investigate the effects of spatial asymmetry, tunneling coupling, and exchange-correlation
correction on the plasmon modes in asymmetric double quantum well (DQW) structures in a time-
dependent local-density approximation. Special attention is paid to the properties of the ω− mode which
is always damped in symmetric DQW systems. In addition, the results on the spectral weight of the exci-
tations are also presented. In general, all the modes carry finite spectral weights and should be observable
in resonant inelastic light scattering experiments for the specified values of the parameters.

PACS. 71.15.-m Methods of electronic structure calculations – 73.20.Mf Collective excitations (including
excitons, polarons, plasmons and other charge-density excitations) – 73.21.-b Electron states and collective
excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems

As an important and elementary question in solid-state
physics, many-body interactions have been continuously
investigated for several decades. Two-component low-
dimensional electron systems such as double quantum well
(DQW) and double quantum wire structures provide ideal
platforms in these studies because the interwell or inter-
wire Coulomb interaction can counterbalance the kinetic
energy of the electrons, allowing many-body effects to be
dominant. In fact, collective excitations in DQW struc-
tures have attracted extensive interest over the last two
decades ever since the existence of an undamped acous-
tic plasmon mode was predicted [1]. As has been pointed
out, this acoustic mode is strongly influenced by tunnel-
ing as well as local field effects and the properties of it
may serve as a sensitively experimental tool in studying
many-body effects. Consequently, the prediction of its ex-
istence in DQW structures stimulates intensively theo-
retical [2–10] and experimental [11–13] investigations in
this field. This acoustic mode, together with the opti-
cal mode, has been observed [13] recently in semicon-
ductor double quantum well systems via inelastic light
scattering spectroscopy which is a powerful and versatile
tool for probing elementary excitations in low-dimensional
semiconductor structures. However, most of the investiga-
tions [1,3–5,7–9,11–13] up to now focus on plasmons in
symmetric systems and the effects of spatial asymmetry
have been rarely concerned, which is rather surprising con-
sidering the extensive studies in this field.

In a recent paper [10], we studied the effects of tun-
neling coupling on the plasmon modes in asymmetric
DQW (ADQW) structures in the random-phase approx-
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imation (RPA). In this paper, we go beyond the sim-
ple RPA by including the exchange-correlation effects
and consider the more realistic and experimentally rele-
vant issue of the plasmon dispersions in ADQW struc-
tures in the time-dependent local-density approximation
(TDLDA) [14]. The purpose is to conduct a systematically
theoretical investigation in the effects of spatial asymme-
try on plasmons in DQW structures. We also calculate the
spectral weight of the excitations which is a direct mea-
sure of the spectral intensity in resonant inelastic light
scattering experiments.

Our ADQW structure consists of two GaAs well layers
(with widths W1 and W2, respectively) separated by an
undoped AlGaAs barrier layer (with a width of b) and ad-
joining to two partly doped AlGaAs layers. Each of these
two partly doped layer is composed of an undoped spacer
layer (with a width of s1 or s2) and a uniformly doped
layer (with a doped concentration of ND). Considering the
depletion effect, we suppose that the donors in the doped
layers are partly ionized. The depletion lengths d1 and
d2 are determined self-consistently. Throughout this pa-
per we adopt the local-density-functional theory to solve
the Poisson’s equation and the one-electron Schrödinger-
like equation self-consistently for obtaining the subband
energies and wave functions [14].

In the TDLDA, The dispersion relations of the plas-
mon modes are determined by [14,15]

det
{
δln′δl′n − [

Ull′,nn′(q) + V xc
ll′,nn′

]
Πnn′(q, ω)

}
= 0 ,

(1)
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where

Ull′,nn′(q) =∫ ∫
dz dz′ ξl(z)ξl′(z)

e2

2εrε0q
e−q|z−z′|ξn(z′)ξn′(z′) , (2)

V xc
ll′,nn′ =

∫
dz ξl(z)ξl′(z)

∂Vxc [n(z)]
∂n(z)

ξn(z)ξn′(z) , (3)

Πnn′(q, ω) = 2
∑
k

fn(k) − fn′(k + q)
�(ω + iη) + En(k) − En′(k+q)

·

(4)

Here εr is the relative dielectric constant of the host
semiconductor, ε0 is the dielectric constant of free space,
V xc is the exchange-correlation potential, n(z) is the z-
dependent electron density, fn(k) is the occupation factor
of state |n,k〉, En(k) is the energy of |n,k〉, and η is a
phenomenological parameter taking care of scattering by
impurities. The spectral weight or the dynamical structure
factor S(q, qz , ω) due to the charge-density excitations is
given [2,7,16] by the imaginary part of the dynamical po-
larizability (density-density correlation function), where
qz is the probe wave vector normal to the layers of the
electron gas.

It is well known that in symmetric DQW (SDQW)
structures, the plasmon modes can be separated into two
sets, namely the even parity modes and the odd parity
modes. In the two-subband model, the even and odd parity
modes correspond to the intra- and intersubband modes,
respectively [6]. It has been pointed out that the equa-
tion determining the intrasubband modes is quadratic and
should have two solutions ω±. However, one of these two
intrasubband modes ω− always lies in the single-particle
continua and is highly damped. Therefore, only the so-
called “optical” intrasubband mode ω+ shows up. In the
zero-tunneling case, the intersubband mode ω10 displays a
linear dispersion at long wavelengths and has been called
the “acoustic” mode. When tunneling is appreciable, this
mode develops a long-wavelength gap [4,6–8]. In ADQW
structures, however, the situation becomes quite different.
Due to the asymmetric nature of the wave functions, equa-
tion (1) cannot be separated into sub-equations, which
means that all the modes are coupled together. We will
show that the dispersion relations and the damping prop-
erties of the plasmon modes are drastically influenced by
spatial asymmetry. Furthermore, because of the coupling
between ω+ and ω10, these two modes cannot cross to
each other. Instead, a phenomenon called “anti-crossing”
appears.

In our calculations, we assume s1 = s2 = 50 Å,
ND = 5.0 × 1017 cm−3, εr = 12.87 and η = 0.1 meV.
The effective mass of the electrons in the well (barrier)
layer is chosen to be m∗

0 = 0.067me (m∗
b = 0.087me)

where me is the bare electron mass. The discontinuity
between the electronic conduction band in the well layer
and barrier layer is taken as 180 meV. To show the ef-
fects of the extent of spatial asymmetry on the charge-
density excitations, we calculate the dispersion relations
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Fig. 1. Dispersion relations of the plasmon modes as a func-
tion of wave vector for different widths of the first well while
the width of the second is fixed to 150 Å in the ADQW struc-
tures with b = 40 Å, and n2D = 3.0 × 1011 cm−2. The shaded
regions indicate the single-particle continua.

of the plasmon modes when W2 is fixed while the value
of W1 is changed gradually. The results are shown in
Figure 1, where W2 = 150 Å, b = 40 Å, and n2D =
3.0×1011 cm−2 are assumed in the calculations. Here n2D

is the two-dimensional electronic density of the quantum
well system. The shaded areas indicate the single-particle
continua. It is seen that when the system deviates from
spatial symmetry slightly [see panel (a)], the ω− mode still
lies in the (0–0) single-particle continuum. As increasing
the value of W1, i.e., increasing spatial asymmetry of the
system, the ω− mode gradually moves out of the (0–0)
continuum, as can be seen from panels (b) and (c). It is
also noted that the dispersion relation and damping prop-
erty of the ω10 mode are substantially influenced by spa-
tial asymmetry. We know that in SDQW structures, ω10

always lies above the (0–1) single-particle continuum in
the long-wavelength limit at ordinary electronic densities
(n2D > 1.0 × 1011 cm−2). In the asymmetric case, how-
ever, it is seen that ω10 draws close to the (0–1) continuum
gradually and finally becomes completely damped with
the increase of spatial asymmetry. Our numerical results
predict that at certain conditions (see panel (b)) the two
intrasubband modes ω± and the intersubband mode ω10

can coexist, which should be observable in experiments. In
addition, the anti-crossing phenomenon can be also seen,
as shown in panels (a) and (b).

In Figure 2 we display the dispersion relations of the
plasmon modes in TDLDA as a function of wave vec-
tor for different interwell barrier widths in the ADQW
structures with W1 = 175 Å, W2 = 150 Å, and n2D =
2.0 × 1011 cm−2. It is found that with the increase of
the width of the interwell barrier, the ω− mode shifts
out of the (0–0) single-particle continuum and becomes
undamped while ω10 gradually draws close to the (0–1)
continuum and eventually becomes damped. When the
barrier width is about 40 Å, these three modes coexist.
An interesting phenomenon that accompanies the behav-
iors of the plasmon modes is the similarity of Figure 2 to
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Fig. 2. Dispersion relations of the plasmon modes (thick lines)
as a function of wave vector for different widths of the interwell
barrier in the ADQW structures with W1 = 175 Å, W2 =
150 Å, and n2D = 2.0×1011 cm−2. The gray areas indicate the
single-particle continua.

Figure 1, where we vary the width of the first well (while
we fix the width of the second) or the width of the interwell
barrier, respectively. This similarity comes from the fact
that with the increase of the barrier width, the electrons
are more confined to the two wells and consequently, the
deviation of the system from spatial symmetry becomes
large.

In Figure 3, the calculated plasmon dispersions (thick
lines) are shown for different electron densities in the
ADQW structures with W1 = 175 Å, W2 = 150 Å,
and b = 40 Å. The solid and dashed curves indicate
the TDLDA and RPA results, respectively. The thin solid
lines and thin dotted lines correspond to the boundaries
of the single-particle continua in the TDLDA and RPA,
respectively. It is evident that the dispersion relations and
damping properties of ω+ and ω− differ little in these
two approximations at all electronic densities. However,
the exchange-correlation effects on the subband energies
and the behaviors of the intersubband mode ω10 depend
substantially on the electronic density. When the elec-
tronic density is as high as 3.0 × 1011 cm−2, the TDLDA
results deviate from the RPA results slightly. With the
decrease of the electronic density, however, their differ-
ence increases monotonously. As continuously decreasing
the electron density, the exchange-correlation effects be-
come remarkably important. In the RPA, ω10 lies above
the (0–1) single-particle continuum at all electronic den-
sities because the excitonic correction is zero while the
depolarization shift is positive. In the TDLDA, however,
the excitonic correction partially cancels the depolariza-
tion shift. As a result, ω10 lies more closer to the (0–1)
continuum than that in the RPA case. For the densities
around 8.14×1010 cm−2, the energy of ω10 coincides with
the corresponding quasiparticle energy difference as the
excitonic correction cancels the depolarization shift com-
pletely. As a result, ω10 lies entirely inside the (0–1) con-
tinuum and is highly Landau damped. When decreasing

0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ω
+

ω
10

ω
−

(0−0)

(a)  n
2D

=3.0× 1011

(0−1)

E
ne

rg
y 

  (
m

eV
)

q   (105 cm−1)

0 0.5 1

ω
+

ω
10

ω
−

(0−0)

(b)  n
2D

=1.4×1011

(0−1)

q   (105 cm−1)

0 1 2

ω
+

ω
10

(0−0)

(0−1)

(c)  n
2D

=8.0×1010

q   (105 cm−1)

Fig. 3. Dispersion relations of the plasmon modes as a func-
tion of wave vector for different electron densities as shown in
the ADQW structures with W1 = 175 Å, W2 = 150 Å, and
b = 40 Å. The solid and dashed lines correspond to the results
in the TDLDA and RPA, respectively. The boundaries of the
single-particle continua are also shown (thin lines).
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Fig. 4. Spectral weight of the excitations for different wave
vectors in an ADQW structure with W1 = 175 Å, W2 = 150 Å,
b = 40 Å, and n2D = 3.0 × 1011 cm−2.

the electron density even further, the excitonic correction
becomes larger in magnitude than the depolarization shift,
thus, we obtain the interesting result that ω10 lies below
the (0–1) Landau continuum, as shown in panel (c).

Finally, it is useful to make some remarks upon the ex-
perimental aspects of the collective excitations in ADQW
structures. The current work finds an important result
that for sufficiently large extent of spatial asymmetry, the
originally damped mode ω− becomes undamped and co-
exists with the intrasubband “optical” mode ω+ and the
intersubband mode ω10. To explore the possibility of ob-
serving these phenomena associated with the effects of
spatial asymmetry in the inelastic light scattering exper-
iment, we calculate the spectral weight for the collective
modes in the ADQW structures. As an example, we plot
in Figure 4 the spectral weight for the modes in an ADQW
structure with W1 = 175 Å, W2 = 150 Å, b = 40 Å, and
n2D = 3.0×1011 cm−2 for different wave vectors and fixed
qz = 4.2 × 105 cm−1. The most important message here
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is that all the three modes in general carry finite spectral
weights. Experimentally, ω+ and ω10 have been observed
in SDQW structures. Consequently, we believe that ω−
should also be observable in the inelastic light scatter-
ing experiment at low temperatures because its spectral
weight is comparable to those of the other two modes.

In summary, we have investigated the effects of spa-
tial asymmetry on plasmon modes in DQW structures in
detail. We find that spatial asymmetry possesses essential
effects on the plasmon modes. As increasing the width dif-
ference of the two wells or the width of the barrier grad-
ually, ω− moves out of the single-particle continua while
ω10 draws close to the (0–1) single-particle continuum and
becomes damped. At certain conditions these two modes
as well as the always existing intrasubband mode ω+ can
coexist together. We show that with the decrease of the
electronic density, the exchange-correlation effects become
remarkably important. We also provide the numerical re-
sults on the spectral weights for the excitations. In general,
all the three modes carry finite spectral weight and should
be observable in the inelastic light scattering spectroscopy.

This work was supported by the National Science Foundation
of China.
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